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Linking procedural and conceptual knowledge
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After summarizing possible distinctions and relationships between procedural and
conceptual knowledge, this study examines possible means whereby these two
knowledge types can be related. Through considering suitable tasks assessing
procedural and conceptual knowledge and their links, evolved is the main feature of
traditional and technology-supported learning environments that would promote
the desired links. Suggestions for further research are included.

Terminological clarification

The dinstinction between procedural and procedural mathematical knowl-

edge seems appropriate at both theoretical and practical levels. Although

such a distinction has been defined/described in various ways, most of them
can be included in the following categorization made by Haapasalo &

Kadijevich (2000, 141).

*  Procedural knowledge denotes dynamic and successful utilisation of
particular rules, algorithms or procedures within relevant representation
form(s), which usually require(s) not only knowledge ofthe objects being
utilised, but also knowledge of the format and syntax for the representa-
tional system(s) expressing them.

* Conceptual knowledge denotes knowledge of and a skilful ‘drive’ along
particular networks, the elements of which can be concepts, rules
(algorithms, procedures, etc.), and even problems (a solved problem may
introduce a new concept or rule) given in various representation forms.

While procedural knowledge often calls for automated and unconscious
steps, conceptual knowledge typically requires conscious thinking. However,
the former may also be demonstrated in a reflective mode of thinking when,
for example, the learner skilfully combines two rules without knowing why
they work.
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Does procedural rely on conceptual knowledge or vice versa?

According to Shimizu (1996, 234), “understanding how procedural knowledge
and conceptual knowledge relate to one another is one of the major foci in
mathematics education”. The literature evidences that researchers/educators
basically assume the reliance of conceptual knowledge on procedural knowl-
edge or vice versa, which, respectively, implies the following educational
strategy: “use procedural knowledge and reflect on the outcome” or “build
meaning for procedural knowledge before mastering it”. The former position,
called developmental approach, reflects the developmental nature of mathe-
matics, especially in early mathematics education, whereas the latter, called
educational approach, seems to fulfill educational needs typically requiring
alarge body of knowledge to be understood. (Haapasalo & Kadijevich 2000)

While the developmental approach may be suitable for introducing the
concept of a limit that promotes its dynamic definition, the educational
approach may be appropriate for teaching fractions and decimals. According
to Vygotsky (1978), procedural knowledge does precede conceptual knowl-
edge ontogenetically, but it is school learning that frequently precedes
intellectual development. Such a position suggests that, for most topics, the
educational approach may be more relevant than the developmental one.
However, the utilization of an interplay between these approaches may, for
some topics, be a better strategy than the application of just one of them. This
interplay is highlighted by Haapasalo (2003, xx-yy), stressing the impor-
tance of pedagogical theories guiding the learning process.

Are links between procedural and conceptual knowledge
promoted in practice?

There is no doubt that mathematics education should, among other important
goals, develop both procedural and conceptual knowledge and make links
between the two. However, a small number of studies examined the effects
of their treatments on the coordination of two knowledge types. As regards
the traditional mathematics education, Nesher (1986) and Shimizu (1996)
evidence no links between procedural and conceptual knowledge (hereafter
P-C links). As regards a computer-based mathematics education, the re-
ported outcomes are contradictory. While Yerushalmy (1991), Hochfelsner
& Kligner (1998) and Laborde (2000) report the lack of P-C links, Schwarz
et al. (1990), Simmons & Cope (1997) and Kadijevich & Haapasalo (2001)
evidence that P-C links can be established. A summary of the favourable
findings 1s given below.
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Having utilized a computer-based, three-fold function representation
dealing with algebraic, graphic and tabular forms, at least 43% of the
subjects established P-C links (Schwarz et al. 1990).

Arestricted LOGO feedback, displaying the screen turtle’s position only,
could make P-C links concerning angle and rotation (Simmons & Cope
1997).

P-C links were promoted through the development (and refinement) of
expert system knowledge bases comprising various facts and rules. Such
links were also established through the construction of conceptual
knowledge based upon a five-step framework involving verbal, graphic
and symbolic concept representations (Kadijevich & Haapasalo 2001).

In what way can P-C links be established?

Although research has not explicitly dealt with this question, initial answers
can be extrapolated from the literature. Four of them are summarized below.
It may be said that while the first two views reflect the developmental
approach, the rest ones assume the educational approach.

Use multiple representations coordination — Learner usually divides
the world (not a problem) into several (conceptual) microworlds, ena-
bling different procedures to be applied within each of them (e.g. adding
numbers in little worlds based upon finger manipulation, money facts and
LOGO turtle geometry facts). It is basically the elaboration and coordi-
nation of these microworlds that enables conceptual knowledge to
develop out of such fractured procedural knowledge. (Papert 1987)
Foster proceptual thinking— A procept is “a combined mental object
consisting of a process, a concept produced by that process, and a symbol
which may be used to denote either of both”. P-C links are promoted
through proceptual thinking by utilizing “procedures where appropriate
and symbols as manipulable objects where appropriate”. (Gray & Tall
1993, 6-8)

Exercise production rules utilization — New task-specific productions
(condition-action rules) have been initially developed through applying
the available conceptual knowledge interpretively by means of some
general problem-solving productions. These newly generated skills
comprise procedural knowledge after collapsing of a sequence of produc-
tions into a single one whose utilization doesn’t require conceptual
knowledge retrieval. It is therefore production rules utilization that
enables P-C links. (Anderson 1983)
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* Apply competence items utilization (educational approach) — It is
utilization competence comprising various enabling conditions that
makes P-C links possible. In geometric tasks calling for locus construc-
tions (e.g. construct a triangle, being given a + b, ¢, and b), an enabling
condition (an utilization competence item) is typically the following rule:
“To determine a point that lies on a line with certain properties, construct
this line obtaining a locus for that point”. (Gelman & Meck 1986, 30)

While Schwarz et al. (1990) and Haapasalo’s five-step framework
(Kadijevich & Haapasalo 2001; more detail in Haapasalo 2003) utilize
multiple representation coordination, Kadijevich’s empirical research
(Kadijevich & Haapasalo 2001) applies production rules utilization.

Implications for theory and practice

Probably because of its high complexity, the question of P-C links has been
only partially (and mostly implicitly) addressed so far. Having in mind their
strong educational relevance, P-C links need to be examined in more detail
both on theoretical and empirical levels. Three directions seem particularly
relevant: (1) clarify the nature of P-C links, (2) design traditional and

technology-supported learning environments promoting P-C links; and (3)

develop tasks, assessing the two knowledge types and their links. Although

these directions are highly interrelated — (1) calls for (3), (2) is based on (3)

both influenced by (1), etc. — the last direction is probably the most

important since, without a proper measure, the two knowledge types and
their links cannot be adequately addressed, which then cannot yield improve-
ments in directions (1) and (2). Despite the fact that tasks/problems may be

(very) person, content and context sensitive (especially if a constructivist

position is assumed), the rest of this section summarizes some research

findings relevant to directions (1) - (3) that may advance our knowledge on

P-C links.

* Direction (3) — By examining procedural and conceptual demands
embedded into tasks on modelling, Galbraith & Haines (2001), distin-
guish three task types: (1) mechanical involving routine calculations
(e.g., factorize x2—ax + 12 for a =5, 6, 7 and 8); (2) interpretative
requiring conceptual conclusions (e.g., determine the position of vertex
for y=x2— ax + 6 as given by a); and (3) constructive involving links
between procedural and conceptual knowledge (e.g., given graphically
1/sinx and 1/cosx, draw y =2/sinx + 2/cosx). A promising approach is to
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develop such groups of tasks, and, of course, to verify their categorization
psychometrically. (Can we confidently speak about a classification/
taxonomy and utilize it trustworthily if it has not been (cannot be)
reflected in the subjects’ scores on assessment items?) This requirement
is particularly relevant to technology-based mathematics education,
where more time can be devoted to conceptual matters. An example of
the three task types taken from Leinbach et al. (2002) is given below.

Using the random number generator in your CAS generate a

general cubic function of the form f{x) = ax® + bx* + cx + d where

a,b,c,darerandom values ><0. Adjusttherange of your graphing

window so that you have a reasonable view of the graph of f(x).

Mechanical - Locate the centre of symmetry for the graph of f(x).

Find a transformation to make this centre of symmetry lie on the

x-axis. Graph the transformed function.

Interpretative - Using the substitution operator in your CAS,

replace x by (x - s) for s = 1, +2. Graph these new functions,

describe the result of this substitution.

Constructive - Consider a general cubic function f{x) = ax® + bx?

+ cx +d, find a shift of the graph of fthat will eliminate the squared

term in the expression for the shifted function. (p. 5)

A crediblerationale for such a categorization” can be found in Slavit’s

(1996) three views of functions related to action-oriented objects (func-
tion as a computational machine), object-oriented objects (function as a
graph describing how independent and dependent variables change) and
property-oriented objects (function as an object having local and global
properties).
Direction (2) — A crucial point in Slavit’s examination of functions is
not that there are exactly tree views of functions but that functions can be
viewed in several ways. The same applies for other mathematical objects.
A quote from Thurston (1998) is relevant here.

There is a number of ways of “thinking about or conceiving of the

derivative, rather than a list of different logical definitions.

Unless great efforts are made to maintain the tone and flavour of

the original human insights, the differences start to evaporate as

soon as the mental concepts are translated into precise, formal and

explicit definitions. (p. 341)

# No matter how a task classification/taxonomy is theoretically and/or empirically

grounded, one can always debate its description and operationalization since, as underlined,

task/problem solving may be (very) person, content and context sensitive. However, to guide

and foster adequate mathematics learning as well as achieve a comprehensive evaluation of its
outcome, mathematical competencies (knowledge and skills) should be viewed, taught and
assessed by means of a suitable task classification/taxonomy used as a useful framework not
as a dogmatic recipe.
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Since amathematical object can be a solution process (recall thata solved
problem may introduce a new concept or rule), problems should also be
solved in several ways.“ This means that mathematical objects (con-
cepts, procedures, problems, etc.) should be, whenever possible, exam-
ined from different perspectives, which strongly suggests that enabling/
utilizing various learning paths (give several problem solutions, provide
different views on the same object/topic, examine different mathematical
objects from the same perspective, etc.) may be the main feature of
traditional and technology-based learning environments that would
make P-C links possible. Or, to use a “glasses” metaphor, the landscape
of mathematics should continuously be viewed with different glasses, the
choice and utilization of which should be explicitly taught to students, of
course, in a properly-stressed way. Henri Poincaré once said that
mathematics is the art of giving the same name to different things, which
is a profound idea of the contemporary notion of isomorphism. Some-
times it can also be said, though not in such a profound way, that
mathematics is the art of giving different names to the same thing (e.g.,
1/2 can stand for a fraction, a rate or simply the division 1 by 2). Good
glasses and their proper use seem therefore unavoidable for those
wishing to relate procedural and conceptual mathematical issues, and
realize what mathematics really is, concerning a general, humanist-
oriented context. Of course, good glasses do not automatically produce
goodpictures. Toavoidadata overflow in learning, it is often appropriate
to simplify the learning situation as described by Haapasalo (2003, xx-yy).
Direction (1) — “The relation between computational expertise and
conceptual understanding, and how each supports the other, is complex
and requires careful study and thought.” (Howe, 1998, 244). Such a study
may refine multiple representations coordination that seems appropriate
not only for the developmental approach but also for the educational one
(see Haapasalo 2003). Remembering the relevance of the affective
domain for problem solving performance (e.g., Schoenfeld 1992), the
nature of P-C links may not only be examined in cognitive, but also
affective terms. We still little now how cognition and affect interact
when learning is taking place, butitis sure that P-Clinks, as any cognitive
product, are to some extent influenced by the affective domain.

“According to the NCES document Pursuing Excellence, relating to the Third International

Mathematics and Science Study (NCES 1996), this activity was a distinctive feature of
Japanese mathematical teaching, which enabled Japanese students to obtain considerably
higher test scores than U.S. and German students who were taught in the traditional way
emphasizing skills rather than understanding.
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Coda

Computers can be used as cognitive tools, and having in mind that multime-
dia may be a powerful tool for knowledge construction (Jonassen 2000),
future mathematics teachers should design multimedia lessons enabling/
utilizing various learning paths, which would help them and their students
establish P-C links. Although the explicit treatment of P-C links is a very
complex enterprise for multimedia designers, successful multimedia lessons
can still be developed (Kadijevich 2002).

“A very important research question regarding computer-based mathematics
education is how different technologies affect the relation between procedural and
conceptual knowledge” (Kaput 1992, 549). Although this research direction
has been put forward some ten years ago, very little has been done to uncover
in what ways, to what extent and for what kind of students P-C links can be
promoted in different computer-based environments, such as spreadsheets,
dynamic geometry software, CAS and multimedia software. Further re-
search may primarily address these questions promoting more appropriate
learning activities.
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