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This study dealt with learning through instructional design real-
ized through the development of expert system knowledge
bases. Its major objective was to determine the empirical values
of this kind of learning in respect of knowledge base develop-
ment. The study used a sample of 18 ninth grade Gymnasium
(high school) students whose mathematical and non-verbal intel-
lectual abilities were mostly above average. The students solved
problems on rectilinear (piecewise) uniform motion involving
one and two objects. Two important findings emerged from this
study. First, armed with a text editor and an expert system shell,
the students successfully developed, within a few hours, small-
scale knowledge bases. These bases comprised around ten (hier-
archically organized) rules expressing how several related prob-
lems can be solved. Second, the students primarily encountered
difficulties in respect of wrong rules utilization—rules with sur-
plus variables, wrongly linked rules, viciously circled rules and
wrongly ordered rules. As these difficulties did not significantly
affect knowledge base development, the study evidenced that
mathematics students of above-average mathematical and intel-
lectual abilities can indeed be successful knowledge engineers.

Much research has been done on using computers in teaching/learning
mathematics (e.g., Ruthven, 1989; Kaput, 1992; Keitel & Ruthven, 1993).
However, except for Harel and Papert (1990) and Lippert (1990), researchers
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have not focused on learning through educational software design
(Kadijevich, 1993) although it may be a promising alternative to traditional
instructional designs (Wilson & Cole, 1991). According to Lippert (1990),
learning through knowledge engineering may be fruitful for teaching mathe-
matics and physics. She speculated that even sixth grade students might be
able to create small-scale knowledge bases in these subjects. It is true that
several constructivist educators have suggested knowledge engineering
and the use of expert system shells as cognitive tools (e.g., Jonassen, 1996),
but there is a lack of rigorous research investigating the efficiency of this ap-
proach. In order to remedy this gap, the major objective of this study was to
determine the empirical values of learning through knowledge engineering in
respect of knowledge base development.

The knowledge base development was utilized within LISD (Learning
through Intelligent Software Development)—an approach to teaching/learn-
ing mathematical problem solving. This approach enables students to devel-
op and test knowledge bases with the aid of a text editor and an expert sys-
tem shell. LISD uses the heuristic approach of Pélya (1990) and Schoenfeld
(1985) within a framework for developing logic programs (Galle & Kovacs,
1992). This framework is based upon rapid prototyping (Tripp & Bichelmey-
er, 1990) through programming in logic and PROLOG (Sterling & Shapiro,
1986; Bratko, 1990). LISD design, underlying research framework and theo-
retical values are examined in Kadijevich (1998).

The LISD empirical values regarding knowledge base development were
analyzed in respect of the following questions:

1. What kind of knowledge bases can mathematics students develop?
2. Which sort of difficulties may appear in knowledge base development?

The questions were examined for problems on rectilinear (piecewise)
uniform motion involving one and two-objects (see Figure 1). These prob-
lems, which traditionally form a part of mathematics curriculum (e.g., Prilep-
ko, 1985), are invariably beyond the competence of most students. This is
because their solutions call for skillful coordinations of required procedural
and conceptual knowledge. While procedural knowledge (“knowing how”)
is concerned with utilizing specific procedures, conceptual knowledge
(“knowing that”) deals with objects, their properties and the relations among
them (e.g., Hiebert & Carpenter, 1992). In AI community conceptual knowl-
edge is usually denoted by declarative knowledge (e.g., Hofstadter, 1980).

Research on the formation and mastery of motion concepts has a long
tradition (e.g., Arons, 1990). However, problems on rectilinear (piecewise)
uniform motion involving one and two objects (e.g., problems on motion in
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respect of a reference point, meeting and overtaking problems, timetable
problems and average speed problems) have not been extel;sively re-
searched so far. As regards problems on meeting and overtaking, Harel and
Hoz (1990) evidenced their high structural complexity, whereas I’\Iathan and

Young (1990) experimented with makin
g the structure of thi
transparent to the solver. s

1. A car and a truck started simultaneousl
y from towns that are 150 km apart
and met each other e_lfter 1 hour 30 minutes. Find the speed of each vehic?e if
5 tze fpdeedt of the car is 20 km/h greater than that of the truck
- A student covered half the path on foot moving at the s .d f
. | 4 km/h and
half on a bike moving at the speed of 12 km/h. Fi il
Lty Ty p m/h. Find his average speed for the
3. A bus commonly goes between towns A i
and B moving at the speed of 70
:<m/h. Dye tq motor damage, the bus started from town A with a 15pminute de-
ay, but it arrived at town B on time (according to the timetable) since it moved
10 km/h faster than usual. Find the distance between the towns.

Figure 1. Sample problems on motion

METHODOLOGY

Subjects

The study used a sample of 18 volunteers from seven ninth grade class-

es of a Gymnasium (the average age was 15.7 years; 6 were male) whose
mathematical and non-verbal intellectual abilities! were mostly above aver-
age. The subjects had experience in writing simple BASIC programs, but
none of them had any experience with LISD and expert systems. The ’sub-
Jects were taught by the author of this study.

Software

Three pieces of software were used: a simple DOS text editor, an expert
system sbell and a tracer. The applied shell supports an if-then formalism for
representing knowledge. It allows the use of the following commands:

e solve (solve the problem);
how (show how the problem has been solved);
why (show the underlying rule);

help (show the procedural and/or conceptual background of the
underlying rule);
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e tron (show the way in which the rules are fired);

e troff (turn the tracing facility off); and
o list (list the content of the working storage—a temporary knowledge base).

The shell was developed in logic and implemented in PI_{OLOG by .the
author of this study on the basis of some shell samples (Sterling & Shaplr.o,
1986; Merritt, 1989; Bratko, 1990). As PROLOG is used, the shell enables its

ify and extend it quite easily. '
o ’tl?h:u;))iogess of knowle?ige base development was traced by using a
simple PROLOG program. This program, which was also made by the'autho;
of this study, permits the use of a text editor within PROLOG systerg in suc
a way that every exit from the editor is followed by making a hard-disk copy
of the current document (knowledge base in our case).

Treatment

The treatment, the content of which is summarized in Figure 2, lasted for
two weeks. The treatment time comprised almost 30 hours .of stuqy—IS
hours of schoolwork and about 10 hours of homework—during which the
subjects engaged in genuine problem solving. . ‘

JDuring the first week the subjects were introduced to the following

three topics:

e problem solving according to Pélya and Schoenfeld;
e solving typical problems on motion; and . .
e expert systems and knowledge representation by if-then rules.

The subjects solved problems in pairs which they formed themselves.
During the second week the pairs developed knowledge bases encapsulat-
ing how the following six types of problems can be solved:

1. basic problems on one object motion—the basic relations reggrdi.ng
speed, covered distance and elapsed time (starting time and finishing
time were included)?; o

problems on one object motion in respect of a reference point;

meeting and overtaking problems; o

timetable problems (e.g., problem 3 in Figure 1);

average speed problems; and . . . ‘
problems on interpreting distance vs. time graphs representing piecewise
uniform motion.

S
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First Week

The following topics were realized in the given order in five days (one topic per
day within 2 hours).

1. Problem Solving Methodology. Pélya’s phases of problem solving. An exam-
ple. Basic heuristics (redefinition, specialization, generalization and analogy)

and examples of their use. Schoenfeld’s control of problem solving. An ex-
ample.

2. Problems on One Object Motion. Problems with speed, elapsed time (ap-
pears directly or indirectly via starting and finishing times) and covered dis-
tance (appears directly or indirectly via initial and final distances from refer-
ence point). Sketching and interpreting quantitative and qualitative distance
vs. time graphs representing piecewise uniform motion.

3. Problems on Two Object Motion. Problems on meeting and overtaking.
Sketching and interpreting quantitative and qualitative distance vs. time
graphs representing piecewise uniform motion. Reducing two object motion
on one object motion (specialization).

4. Advanced Problems on Motion. Timetable problems. Average speed prob-
lems. Examining one object motion as two object motion (generalization). Mo-
tion on the river and in the air (analogy).

5. Problem Solving by Expert Systems. What is an expert system? Application
areas. An expert system regarding problems on percentage (experimenta-
tion). Expert system architecture. Knowledge representation by if-then rules.
Analysis of the consulted knowledge base.

Second Week

The following topics were realized in the given order in four days (one topic per
day within 2 hours).

1. Problems on One Object Motion (first part). Work with text editor and PRO-
LOG system. Developing and testing first knowledge base regarding basic
relations among speed, elapsed time (appears directly or indirectly via start-
ing and finishing times) and covered distance.

2. Problems on One Object Motion (second part). Developing and testing
knowledge bases regarding one object motion in respect of reference point.
Developing and testing knowledge bases concerning the interpretation of
distance vs. time graphs representing piecewise uniform motion (optional).

3. Problems on Two Object Motion. Developing and testing knowledge bases
regarding problems on meeting and overtaking (first part).

4. Problems on One and Two Object Motion. Developing and testing knowledge
bases concerning problems on meeting and overtaking (second part). Devel-
oping and testing knowledge bases regarding problems on average speed.
Developing and testing knowledge bases in respect of timetable problems
(optional).

Figure 2. Experimental program
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Knowledge Base Development

The subjects developed knowledge bases for some related problems by
using the text editor. These bases were composed of facts, rules and expla-
nations regarding the activation and/or conceptualization of these rules:

o The facts expressed the number of moving objects and their properties
that could be asked by the shell, such as:

objects(1).
askable(covered_distance(X)).

When the shell was utilized, the first fact required the user to enter a con-
crete moving object like “train,” whereas the second fact, if used, enabled
asserting an additional item of information like

known(covered_distance(train)) / unknown(covered_distance(train)).

depending on the user “yes”/ “no” answer to the shell.

e The rules expressed strategies whereby some classes of problems on mo-
tion can be solved. (Such rules do not solve problems quantitatively.)
They had the following form:

if object(X) and
speed(X) and
covered_distance(X)
then answer( elapsed_time (X) = covered_distance(X) / speed(X) ).

While X stands for any object (car, bus, train, etc.), speed(X) denotes
that the speed of a specified object X is known.

e The explanations contained messages regarding the activation and/or
conceptualization of the developed rules, which respectively captured
items of procedural and/or conceptual knowledge. In other words, the ex-
planations clarified why a particular rule is to be used in respect of its
procedural and/or conceptual background.

The validity of the developed knowledge bases was determined with the
aid of the shell. While the initial validity was determined by the subjects
themselves, the final validity was determined by the teacher with the collab-
oration of the subjects. Armed with the text editor, the subjects themselves
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imp-r()'\{ed the developed knowledge bases, taking into account the results of
the initial and final validations.

RESULTS

The s.ubjects (nine pairs of students) developed about 30 knowledge
b.ases, which were saved in nearly 300 versions by using the above men-
tioned PROLOG program. All these knowledge bases were carefully exam-

ine(.i and for each pair of students we determined the values of the following
variables:

the number of developed rules;

the number of correctly developed rules;

the number of incorrectly developed rules;

the number of problems whose solutions are correctly expressed; and
o the number of rules providing for that. ,

The means and standard deviations of these variables are reported in
Table 1. Note that the correctness of a rule was determined in respect of
both a relevant problem on motion and the applied knowledge base formalism.

Table 1
Means and Standard Deviations of the Measured Variables Regarding
Knowledge Base Development

VARIABLE M (SD)

1. number of developed rules 16.8 (5.6)

2. number of correctly developed rules 13.4(5:5)

3. number of incorrectly developed rules 3.4(2.2)
4. number of problems whose solutions are correctly

expressed : 8.1(3.3)

5. number of rules providing for that 11.8(5.6)

For each pair of students we also determined the number of problems
whose solutions are correctly expressed for the examined problem types.
The means and standard deviations of these variables are displayed in Table 2.
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Table 2
Means and Standard Deviations of the Number of Problems Whose Solu-
tions are Correctly Expressed for the Examined Problem Types

PROBLEM TYPE 1 2 3 4 5 6

M (SD) 2.0(1.1) 1.0(1.1) 24 (1.1) .8(8) 15(14) 4.3

The subjects met a number of difficulties in the course of the knowledge
base development. The main difficulties and their frequency (the number of
pairs who encountered them) are summarized in Table 3.

Table 3
Main Difficulties in Knowledge Base Development and Their Frequency

DIFFICULTY N
1. wrong rules utilization o 7

2. distance relations regarding one object motion in respect
of reference point o 4

3. meeting and overtaking time when objects’ starting times
are different 4
4. taking time interval as time point 3

DISCUSSION

Two important findings emerged from this study: First, armed with a t_ext
editor and an expert system shell, the subjects successfully developed, with-
in a few hours, small-scale knowledge bases. Second, the subjects primarily
encountered difficulties in respect of wrong rules utilization, which were qf
the following types: rules with surplus variables, wrongly linked rules, vi-
ciously circled rules and wrongly ordered rules. ' ,

The subjects had no prior experience with the externalization, formaliza-
tion and representation of their own knowledge. Furthermore, they were pro-
vided with very little help from the teacher. Despite that, the developx.nent. of
the knowledge bases was successfully realized, especially if we have in mind
the ratio of the number of correctly developed rules to the number of incor-
rectly developed rules. It is true that the elicitation of expert knowledge is a
highly complex enterprise (Parsaye & Chignell, 1988), but the study showed
that the LISD students could successfully develop small-scale knowledge
bases3 These bases comprised around ten (hierarchically organized)
rules expressing how several related problems can be solved. The study

Can Mathematics Students be Successful Knowledge Engineers? 243

evidenced that the LISD development of such a knowledge base can be real-
ized within a few hours. It therefore supports the above reported Lippert’s
(1990) speculation yet regarding ninth grade students of above average in-
telligence and mathematical ability.

The knowledge base development dealt with six types of problems. In
order to solve them, the subjects created a number of interesting rules such as:

8 rule

if object(X) and
usual_speed(X) and
speed_for_delay(X) and
delay(X)

then answer( traveling_time(X) = speed_for_delay(X) * delay(X) /
(speed_for_delay(X) - usual_speed(X)) ).

11 rule
if object(X) and

left_first(X) and

straight_second(X) and

right_third(X) and

greater_slope_first(X)
then answer( $It moves quickly backward, stops and then
moves slowly forward.$ ).

Note that whilst rule 8 is concerned with a timetable problem, rule 11
deals with the interpretation of a qualitative distance vs. time graph repre-
senting one object piecewise uniform motion. Although the subjects suc-
ceeded in solving problems of type 1, 3 and 5, two difficulties were ob-
served. First, three pairs took a time interval as a time point, like in the fol-
lowing example

meeting_time(X, Y) is distance(X, Y) / (speed(X) + speed(Y)).

(In this and other examples “is” is not a PROLOG operator. It stands for
“is equal to” or “is calculated via”.) Second, only two pairs developed a cor-
rect knowledge base regarding meeting and overtaking problems when ob-
jects have different starting times. This resulted from the fact that other
knowledge engineers (four pairs) did not take into account that different
starting times do affect the initial distance between the objects.

The subjects failed to solve problems of type 2, 4 and 6. This is under-
standable if we have in mind the duration of the treatment as well as the
complexity of the problems of type 4 and 6. It is surprising, however, that the
subject had difficulties with the externalization of distance relations concern-
ing one object motion in respect of a reference point. Since we observed the
same difficulty in our pilot study, further research may examine it in fuller detail.
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In the last two paragraphs we have underlined some difficulties regard-
ing the confusion of time conceptions and the confusion of distance con-
ceptions. These confusions, which have already been realized in physics ed-
ucation, may be summarized as follows.

It is impossible to deal clearly and correctly with instantaneous quantities
without discriminating between instants (or “clock readings”) and time in-
tervals. It is impossible to deal with back-and-forth motion without dis-
criminating between positions, changes in position, and distances travelled
by the body (three different concepts to which the term “distance” is fre-
quently indiscriminately applied.) These are indeed sophisticated ideas;
that is why it took the human mind so long to penetrate them. It is unreal-
istic to expect students to make the penetration in the short time and
through the shortcuts that are so frequently imposed. (Arons, 1990; p. 21)

Most difficulties were observed in respect of wrong rules utilization. We
summarize them under the following labels: (a) rules with surplus variables,
(b) wrongly linked rules, (c) viciously circled rules, and (d) wrongly ordered
rules. These difficulties, however, did not significantly affect knowledge
base development.

Four pairs developed rules with surplus variables, such as:

1 rule

if object(X) and

starting_time(X) is ST and
finishing_time(X) is FT

then answer( elapsed_time(X) = FT - ST ).

Since rules are generally concerned not with solving particular problems
but with describing how some problems can be solved, this use of variables
is not needed. The students quickly realized this fact and did not repeat the
mistake. But, two pairs gave up using variables and developed knowledge
bases comprising isolated rules.

As the subjects were not familiar with PROLOG unification, they initially
linked developed rules in the following way:

1 rule

if object(X) and

speed(X) and

elapsed_time(X)is T

then answer( covered_distance(X) = speed(X) * T ).

4 rule
if object(X) and

B
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starting_time(X) and
finishing_time(X)
then T is finishing_time(X) - starting_time(X).

This mistake—termed wrongly linked rules—was made by five pairs.
Having noticed the mistake, we explained to the students how PROLOG uni-
fies terms and how rules are to be linked. After our explanation, four pairs
continued to represent their knowledge by hierarchically organized rules.
Two pairs developed rules yielding identities of the type “X is X”, such as:

6 rule

if object(X) and

starting_time(X) and

finishing_time(X)

then elapsed_time(X) is finishing_time(X) - starting_time(X).

9 rule

if object(X) and

starting_time(X) and

elapsed_time(X)is T

then answer( finishing_time(X) is starting_time(X) + T ).

These rules—called viciously circled rules—can be circumvented by:
(a) adding a suitable condition to the rule and/or by changing the order of
the rules, or (b) developing another set of rules. In small-scale knowledge
bases viciously circled rules can easily be located and bypassed. Their ap-
pearance should therefore probably have only a minor negative influence on
the outcomes of the knowledge base development. It may be that the ap-
pearance of these rules will slow down the process of knowledge base de-
velopment, but is quite certain that bypassing them will help students to re-
flect on and make use of their knowledge in a better way.

Three pairs of students developed wrongly ordered rules. These stu-
dents were told how PROLOG fires developed rules and how rules should
therefore be ordered. We applied the following rule of thumb:

e ina set of related rules, more specific rules precede others; and
¢ ina whole knowledge base, main rules precede subordinate rules.

Note that our shell displayed the way in which the rules were fired if its trac-
ing facility was set on.

In general, learning through knowledge engineering gives students an
opportunity to develop and test their own epistemologies. As knowledge
bases are developed through the process of knowledge (re)construction
shaped by various classroom interactions, this type of learning does sup-
port the socio-constructivist nature of knowledge and learning (e.g, Ernest,
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1991; Grabinger, 1996). A number of recent analyses underline that prqmot—
ing this nature should be an important goal of research in computer science
(e.g, Leith, 1990; Self, 1990). This issue is particularly relevant to e'ducatlonal
software development, which should involve students and their teach.ers
yielding products that are not based upon foreseen but upon real learning
experiences.

To summarize: the findings reported in this study undoubtedly suggest
the relevance of LISD to teaching/learning mathematics. Further research
may primarily be directed toward: (a) developing mul@edia knowledge
bases® regarding various mathematical topics; and (b) examining @e outcomes
of this kind of learning relating to computational and mathematical issues.
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Notes

1. The mean and standard deviation of the subjects’ nonverbal IQ were
115.5 and 7.8, respectively. This ability was assessed by Daniels’ Figure
Reasoning Test. This test is structurally similar to Ravens Progressive
Matrices and highly correlates with it. The assessment was realized by a
group of psychologists.

2. We did not take into account problems (rules) dealing only with speed,
covered distance and elapsed time.

3. We tried to make the LISD learning requirements as simple as possible.
Thus, neither dealt we explicitly with programming in logic and PROLOG,
nor did we mention the LISD phases (Kadijevich, 1998) and utilize LISD
according to them.

4. Having in mind recently proposed requirements for computer environ-
ments in mathematics education (Tall, 1994), multimedia knowledge bases
may be implemented in Amzi PROLOG since it can easily be embedded in
Microsoft Visual Basic (Kroening, 1995).
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Structural assessments such as concept maps and semantic
networks can provide unique learning and evaluation oppor-
tunities. Large-scale implementation however is inhibited by
psychometric and pragmatic issues. This study reports on the
features of a computer program (KNOT) which utilizes a net-
work similarity index (NETSIM) to compare novice and ex-
pert concept maps. Treatment in three high school physics
classes consisted of three levels of “language-rich” teaching:
low, medium, and high. Results suggest that alpha reliability
is at least .85 and stability reliability is .73. The validity coef-
ficient is .85. Content, construct, concurrent, and predictive
validities are high. Time to collect and analyze data is mini-
mal and enhances the possibility of using NETSIM in large-
scale structural assessments in conjunction with objective
and subjective evaluative measures.

Information is not understanding. Science students who understand devel-

op a rich set of relations among concepts in a domain (Ruiz-Primo & Shavel-
son, 1996). Interrelated concepts form cognitive structures (Diekhoff, 1983).



