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Abstract. Relating procedural and conceptual mathematical knowledge is a very
important educational goal that is difficult to attain. However, research has evidenced
that some progress towards achieving this goal can be made. This contribution briefly
reviews some of the main outcomes of research in this area, focusing on relating these
knowledge types with technology, particularly that based upon a computer algebra
system.
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1. Introduction

Students’ mathematical knowledge and competencies have usually not been
acquired to a degree expected by educators and employers. To illustrate this inap-
propriate state, one may, for example, just refer to two key results from PISA 2012
(involving around half a million 15-year old students in 65 countries and economies
around the world): (1) only 13% of students from 34 OECD member countries
could “develop and work with models for complex situations, and work strategical-
ly using broad, well-developed thinking and reasoning skills”, and (2) 32% of all
tested students could not “extract relevant information from a single source and use
basic algorithms, formulae, procedures or conventions to solve problems involving
whole numbers” (OECD, 2014; p. 4). Had these percentages been exchanged, the
two results would be viewed as appropriate.

An often present failure to teach mathematics may primarily be caused by the
fact that teachers do not take into account sufficiently that mathematical profi-
ciency has many interwoven and interdependent competences, such as reasoning,
problem posing and solving, modelling, representing, handling symbols and formal-
ism, communicating, and utilizing tools and aids (e.g. Jaworski, 2015). (The reader
may recall here the five widely known NCTM process standards: problem solving,
reasoning & proof, communication, connections, and representation.) We should
also bear in mind that various interlinked motives and activities have contribut-
ed to the philogenesis of mathematical knowledge, such as play, calculate, apply,
construct, evaluate, argue, find, and order (Haapasalo & Zimmermann, 2015).

Despite this very important feature of interconnectedness, many mathematics
teachers tend to focus on one aspect at a time, wrongly hoping that other aspect(s)
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would (spontaneously) develop as a consequence (extrapolated from Kilpatrick &
Swafford, 2002). Even when teachers use good problems (e.g. those that focus
on concepts and connections among mathematical ideas), they can, as Stigler and
Hiebert (2004) underlined, implement them in a wrong or inadequate way (e.g.
as problems that call for procedures and basic computational skills). A major
challenge of mathematics education is thus related to developing and interrelat-
ing different aspects, competences, motives, and activities. An important part of
this challenge is concerned with developing and relating conceptual and procedural
mathematical knowledge.

2. Procedural and conceptual knowledge

Terminological clarifications

Because of different research frameworks and the fact that procedural and
conceptual knowledge are not easy to define precisely (e.g. Carpenter, 1986), many
views of procedural (P) and conceptual (C) knowledge can be found in the litera-
ture. Having examined some twenty such views in the end of 1990s, Haapasalo and
Kadijevich (2000), proposed the following P-C distinction:
• “Procedural knowledge denotes dynamic and successful utilization of particular

rules, algorithms or procedures within relevant representation form(s). This
usually requires not only knowledge of the objects being utilized, but also
knowledge of format and syntax for the representational system(s) expressing
them.

• Conceptual knowledge denotes knowledge of and a skillful ‘drive’ around par-
ticular networks, the elements of which can be concepts, rules (algorithms,
procedures, etc.), and even problems (a solved problem may introduce a new
concept or rule) given in various representation forms.” (p. 141)

They also noted that (1) procedural knowledge usually requires automated and un-
conscious steps, whereas conceptual knowledge typically calls for conscious think-
ing, and (2) procedural knowledge may also involve some conscious thinking (e.g.
when a student skilfully combines two rules without knowing why they work).

This distinction suggests that procedural knowledge may involve some concep-
tual knowledge, and vice versa (this involvement is emphasized by Baroody, Feil
& Johnson, 2007, for example). Having in mind Star (2005), it can be said that
the distinction also reflects a frequently held view that procedural knowledge is
poor in connections, whereas conceptual knowledge is rich in them. However, as he
elaborated, there may be two other possibilities: procedural knowledge that is rich
in connections, and conceptual knowledge that is poor in connections. His account
clearly calls for considering knowledge in terms of both type (e.g. knowledge of
concepts vs. knowledge of procedures) and quality (e.g. knowledge rich in connec-
tions vs. knowledge poor in connections). However, his position that one type of
knowledge (e.g. procedural) can be rich in connections without some support of
other knowledge type was questioned by Baroody and colleagues (2007). They also
underlined that apart from connectedness, there are other important dimensions
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of knowledge quality (e.g. completeness, structuredness) that should be taken into
account as well.

The terminological clarifications in question get more complex when we re-
alize that each type of knowledge may be defined in different ways. Regarding
conceptual knowledge, these ways may, for example, be conceptual knowledge as
connection knowledge, general principle knowledge, or knowledge of principles un-
derlying procedures, the first of which is the most common (Crooks & Alibali,
2014). (Of course, some definitions may fell into multiple categories.) Also, con-
ceptual knowledge may be implicit or explicit, enabling educators to make, for
example, a distinction between basic conceptual knowledge that is implicit, and
advanced conceptual knowledge that is explicit (used in Abramovich, 2015).

Despite these complexities, there seems to be a consensus today on how pro-
cedural and conceptual knowledge should be defined. According to Rittle-Johnson
and Schneider (2015), procedural knowledge denotes the knowledge of procedures
used in problem solving, whereas conceptual knowledge is basically the knowledge
of concepts whose degree of connectedness reflects a person’s expertize.

Distinction of procedural and conceptual tasks
Because one type of knowledge may (and often does) call for some degree of

the other, it is hard to develop conceptual test items that are procedurally free,
and vice versa (Silver, 1986). Thus, we can only use mathematical tasks that
primarily assess one type of knowledge or the other (Rittle-Johnson & Schneider,
2015). Developing P-C pairs of mathematically isomorphic problem solving tasks
may be quite complex. Consider the following two tasks on uniform motion taken
from Haapasalo and Kadijevich (2000; p. 143).
• Procedural task – A car and a truck started simultaneously from towns that

are 150 km apart. After what time did they meet each other if their speeds
were 80 km/h and 60 km/h, respectively?

• Conceptual task – A mountaineer started his trip in the morning arriving at a
mountain house in the evening. Having spent the night there, the mountaineer
started down the next morning by using the same trail. Is there a point on
the trail where he was at the same place at the same time each day? Give a
detailed explanation.1

This procedural task, as other procedural tasks, involves fully quantified objects
requiring exact computations. On the other hand, this kind of conceptual tasks,
which clearly call for genuine understanding of the underlying domain, involve
objects that are not fully quantified and require little computation (for such tasks,
see Dreyfus & Eisenberg, 1990; Kadijevich, 1999a; for example). A particular
challenge is to develop a set of such conceptual tasks that are mathematically
isomorphic. An example of this set is given below.

1This P-C operationalization is usually learner, content, and context dependent. Because
of the quality and organization of the learning process, it is clear that one task can be routine
for one learner, but challenging for other. These two tasks should be given to students who are
familiar with (1) solving traditional meeting and overtaking problems, and (2) using quantitative
and qualitative graphs to represent piecewise uniform motion of one and two objects.
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• Two markers cost more than three pencils. Do 5 markers cost more than 7
pencils (no discount offered)?

• The circumference of an equilateral triangle is larger than that of a rhombus.
Three of these triangles are used to form an isosceles trapezium, whereas two
of those rhombuses are combined to form an arrow shaped figure. Which of
these two such formed figures has a greater circumference?

• At a mathematical contest each solver correctly solved at least five tasks. The
jury observed a curious fact: each task was correctly solved by exactly four
students. Were there more solvers or tasks to be solved at this contest?2 (These
three tasks are taken from Kadijevich & Marinkovic, 2006; p. 37.)

Despite their relevance, P-C minded researchers have rarely used this kind of con-
ceptual tasks, requiring little computation by using objects that are not fully quan-
tified. Having in mind a range of tasks that can be applied in assessing conceptual
knowledge (described in Rittle-Johnson & Schneider, 2015), these conceptual tasks
may belong to ‘explain judgments’ task type.3

3. Relation between procedural and conceptual knowledge

Views of causal relations between two types of knowledge
There are four views of causal relations between procedural and conceptual

knowledge (e.g. Haapasalo & Kadijevich, 2000; Rittle-Johnson & Schneider, 2015).
A summary of four views, proposed in the 1980s and 1990s, is given in Haapasa-

lo and Kadijevich (2000), for example. They examined possible relations between
procedural and conceptual knowledge that might be supported by empirical data,
and then focused on those relations that could be supported by recent theoretical
or empirical studies. Four views remained.
• Inactivation view: Procedural and conceptual knowledge are not related.
• Simultaneous activation view: Procedural and conceptual knowledge are based

upon each other (or, in propositional terms, p is necessary and sufficient for c).
• Dynamic interaction view: Procedural knowledge is based upon conceptual

knowledge (i.e. c is necessary but not sufficient for p).
• Genetic view: Conceptual knowledge is based upon procedural knowledge (i.e.

p is necessary but not sufficient for c).
One of recent summaries of four views, based upon research in the 2000s and early
2010s, can be found in Rittle-Johnson and Schneider (2015), for example. The two
authors describe these views in the following way:
• Procedural and conceptual knowledge develop independently.
• Learn concepts first, i.e. procedural knowledge develops on the basis of acquired

conceptual knowledge.

2A question that clarifies the mathematics behind these three tasks may be: “If 3x > 4y for
some x, y > 0, is 7x greater than 9y?” [yes; 7x > (28/3)y > 9y]

3Other suitable task types are examined in Kadijevich (2003), and Haapasalo (2013a), for
example.
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• Learn procedures first, i.e. conceptual knowledge develops on the basis of ac-
quired procedural knowledge.

• Procedural and conceptual knowledge develop in an iterative way: increases
in one of them lead to succeeding increases in the other.

These authors underline that the last view – which incorporates the second and
the third view as further learning may start from one type of knowledge or the
other – is widely accepted today. Furthermore, they underline that apart from
considerable evidence that the iterative view usually applies, there is evidence that
the influence of conceptual knowledge on procedural knowledge may be stronger
than the reverse. The authors note that an iterative way was not discussed in early
research on procedural and conceptual knowledge. However, the reader may find
its roots in the above-mentioned simultaneous activation view (proposed by Byrnes
& Wasik, 1991), according to which one type of knowledge is based upon the other,
and vice versa.

Means and ways to relate two types of knowledge

Various means and ways to promote relations between procedural and concep-
tual knowledge (i.e. link the two types of knowledge) can be found in the literature.
Regarding the means, a brief summary of four such means are given below.

• Links from procedural to conceptual knowledge may be established through the
elaboration and coordination of several microworlds (whereby the learner ‘slices
the reality), within which different procedures are usually used in problem
solving (Papert, 1987).

• By applying some general problem solving productions (i.e. if-then rules), links
from conceptual to procedural knowledge may be established through the de-
velopment of task-specific productions reflecting available conceptual knowl-
edge of that task (Anderson, 1983).

• By using the notion of procept (i.e. “a combined mental object consisting of a
process, a concept produced by that process, and a symbol which may be used
to denote either of both”), Gray and Tall (1993; p. 8) proposed that the two
knowledge types are related through utilizing “procedures where appropriate
and symbols as manipulable objects where appropriate.”

• Procedural and conceptual knowledge may be unconnected, or sparsely, some-
what, well or richly connected, and it is big ideas (e.g. equal partitioning) that,
applied as overarching concepts, connect concepts and procedures from one or
several topics (Baroody et al., 2007).

Note that while the first two positions assume that one type of knowledge is based
upon the other, the remaining two do not assume particular knowledge dependency.

Regarding the ways, a short summary of some of them follows.

• The links in question can be promoted through replicating solutions with tech-
nology on the basis of technology-generated partial solutions, whose steps are
given in direct or reverse orders (Zehavi, 1997).
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• Problem solving through the development of expert system knowledge bases
comprising if-then rules (the so-called knowledge engineering) would relate
procedural and conceptual knowledge (Kadijevich, 1999b).

• Relating different problem representations would establish links between proce-
dural and conceptual knowledge (e.g. Schwarz, Dreyfus & Bruckheimer, 1990;
Haapasalo, Zimmermann & Rehlich, 2004; Haapasalo, 2013b).

• Using comparisons (e.g. comparing methods whereby problems are solved;
comparing problems solved with the same procedures) may be a way to pro-
mote links between procedural and conceptual knowledge (extrapolated from
Schneider, Rittle-Johnson & Star, 2011; Rittle-Johnson, Star & Durkin, 2012;
Star et al., 2015).

4. Relating procedural and conceptual knowledge with technology

Many studies have examined whether the use of technology can aid the de-
velopment of procedural and conceptual knowledge. Recent summaries of research
findings in that respect can, for example, be found in Tall, Smith and Piez (2008),
and Olive and Makar (2009), and, in brief, the findings are opposing.

The findings are also opposing with respect to the effects of technology on
relating the two types of knowledge. Nevertheless, research studies that exam-
ine these effects are quite rare (Kadijevich, 2007), particularly studies that report
the overall relations attained in terms of correlations or other appropriate means.
Two such studies, with significant positive correlations in question, are reported
in Kadijevich and Haapasalo (2001). One study was based upon production rules
utilization, whereas the other made use of multiple representations transformation.

A number of studies in the last fifteen years examined how procedural and
conceptual knowledge may be connected when technology is used (e.g. Haapasalo,
2003; Drijvers, 2004; Haapasalo et al., 2004; Trouche, 2005; Kadijevich, 2007;
Ehmke, Pesonen & Haapasalo, 2010; Kieran, 2013; Abramovich & Connell, 2015).
These studies made use of various technologies (e.g. Java applets, computer algebra
systems, custom software) at different educational levels (mostly secondary and
tertiary).

What kind of technology-based instruction may be applied in general?
It seems that a procedural (i.e. from procedures to concepts) approach should

usually be combined with a conceptual (i.e. from concepts to procedures) approach
(e.g. Haapasalo, 2003; Ehmke et al., 2010). In other words, in terms of Haapasalo
and Kadijevich (2000), the developmental approach should be combined with the
educational approach.4

4The developmental approach is supported by the genetic or simultaneous activation view,
whereas the educational approach is supported by the dynamic interaction or simultaneous acti-
vation view. The former approach reflects the philogenesis of mathematical knowledge, whereas
the latter one fulfils educational needs that require a large body of knowledge to be understood
and applied successfully. Their possible instructional interpretations may be “utilize procedur-
al knowledge and reflect on the outcome”, and “build meaning for procedural knowledge before
mastering it”, respectively.
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What may basic means to relate procedural and conceptual knowledge be?
Mathematics can be viewed as the science of making and updating links among

representing, operating, and interpreting (Peschek & Schneider, 2001). In general,
the use of technology allows more time for representing, interpreting, and reflecting
on the three and their relations. By accepting representing as the foundation of
understanding in school mathematics, the central issues of that understanding are
thus related to selecting, using, and coordinating different representations (Heid,
2002). Such a position is in accord with Rittle-Johnson, Siegler and Alibali (2001),
who found that a change of problem representation influences the relation in ques-
tion. To avoid one-side uses of representations (i.e. using one of them ignoring
the other(s)), instruction should provide appropriate prompts for use of multiple
representations (e.g. Renkl, Berthold, Grosse & Schwonke, 2013).

Using computer algebra environments

Although it has been very important to uncover how different technologies
(i.e. learning opportunities of different technologies) affect links between procedur-
al knowledge and conceptual knowledge (Kaput, 1992), very little has been done
in this important research area.5 Several kinds of technological environments have
been used (e.g. spreadsheets, interactive geometry software, computer algebra sys-
tems, and statistical packages), among which environments based upon computer
algebra systems (CASs) are probable the most widely studied in general (suggested
by Heid & Blume, 2008, and Hoyles & Lagrange, 2009; for numerical facts about
CAS use, see Buteau, Jarvis & Lavicza, 2014). Such a dominant CAS orientation
might partly be the results of a number of research activities within the internation-
al CAME (Computer Algebra in Mathematics Education) group during the 2000s,
which resulted in five CAME symposia.

Research has evidenced (e.g. Gjone 2004; Trouche, 2005; Roger Brown, person-
al communication, July 21, 2006) that students often use CAS-based environments
(CASEs) in one-sided ways (e.g. do not coordinate procedural and conceptual so-
lutions; use just one problem representation; reason within the tool used). This
unfavorable state has been the result of (a) using inappropriate tasks (e.g. not
focusing on relating procedural and conceptual issues, and without explicit re-
quirements for expected solutions concerning the work in different representations),
(b) facing technical and personal challenges in using CASE (e.g. changing CAS rep-
resentations systematically; having no difficulties with CAS answers; using CAS in
strategic, functional, and pedagogical ways; Pierce & Stacey, 2004), and (c) having
more strategies for solving problems that introduce difficulties for both students
and their teachers (Brown, 2003). Because of these one-sided ways, links between
procedural and conceptual knowledge are usually missing.

To reduce one-side approaches in solving tasks in CASE (and with technolo-
gy in general), and promote links between procedural and conceptual knowledge,

5That this research area has been underrepresented for computer algebra environments is
evidenced by, for example, a summary made by Heid and colleagues (Heid, Thomas & Zbiek,
2013).
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students should be required to (a) produce, whenever possible, solutions based up-
on the application of both procedural (process) approach and conceptual (object)
approach, and (b) work with different problem representations (Kadijevich, 2007).
And, to promote appropriate reasoning that goes beyond the technology applied,
the student may be continuously reminded of the following: when applying mathe-
matics with technology, dont forget available affordances of that technology; when
utilizing these affordances, don’t forget the underlying mathematics (Kadijevich,
Haapasalo & Hvorecky, 2005). Of course, appropriate instructional prompts con-
cerning all these issues may be given to students.

Clearly, carefully developed tasks are means to relating techniques and theories
(suggested by Artigue, 2002).6 And, with the requirements given above, it is less
likely that tasks designed to be conceptual would be solved in solely procedural
ways (as happens in the traditional education as well; for interesting examples,
see Engelbrecht, Bergsten & K̊agesten, 2009). To confirm identities (e.g. sin 3x =
3 sin x − 4 sin3 x), apart from using procedural approach (applying several rows of
eligible transformations) and conceptual approach (testing the equality of the two
expressions), the transformations in question may be coupled with comparisons
of graphs of the underlying functions, and the verifications of the equalities of two
expressions through solving appropriate equations. In solving equation ex =

√
x−3,

for example, apart from comparing graphs of the two underlying functions (f(x) =
ex, g(x) =

√
x − 3) or utilizing built-in CAS commands, the student may apply a

“don’t forget” argument such as x− 3 < x < ex (possibly validated in CASE).
Not only are suitable tasks (with requirements how to solve them) critical for

promoting links between procedural and conceptual knowledge, but the quality of
the tool used and the adequacy of the scaffolding offered also considerably influence
this promotion.

Regarding the tool quality, the success in relating the two types of knowledge
in CASE, as is probably the case of other technologies, is mainly conditioned by
the congruence between a paper-and-pencil technique and its CAS version, and
the transparency of that version (Drijvers, 2004).7 Having in mind various limi-
tations of CASEs (e.g. Böhm, 2009; Kadijevich, 2009), the quality of CASE may
be improved with appropriately designed user-defined commands (Gjone, 2009;
Kadijevich, 2009). This CASE enrichment is attained through a process called
instrumentalization (for the twin processes of instrumentation and instrumental-
ization, see Trouche, 2005). To benefit from it to a larger extent, educators need
(1) a better CASE with a control of auto-simplification and a full linkage of differ-
ent representations; (2) a better traditional instruction that unravels procedural,

6It is techniques that relate tasks and theories. Techniques have not only a pragmatic,
but also an epistemic function. Through solving tasks techniques fulfill their pragmatic func-
tion. Through building concepts they accomplish their epistemic function. It may be said that
techniques are means to link procedures and concepts (Langrage, 2005).

7An approach that requires students to compare their solutions with CASE generated so-
lutions may need considerable scaffolding (suggested by Tnisson, 2013, and Tönisson & Lepp,
2015). A more efficient approach would be to require students to compare correct paper-and-pecil
solutions with (more or less similar) CASE generated solutions with some modest scaffolding
offered.
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conceptual, and other relevant issues in explicit ways; and (3) an improved pro-
gramming practice that, when appropriate, also takes into account the epistemic
aspects of the developed programs (Kadijevich, 2014).

Regarding the scaffolding adequacy, it is not only instructional prompts regard-
ing the requirements how tasks should be solved that matter. Suitable descriptions
of acceptable solutions (e.g. to clarify the result undefined, you may use visual
arguments) and scaffolds to help students cope with the limitations of the tool (e.g.
to realize the solution, replace 0 with 1 and compare the two outcomes) are also
needed (Kadijevich, 2014). By using these prompts, descriptions, and scaffolds8

initial designs of technology-based tasks (e.g. Berger, 2011) would be improved.
The relation between two types of knowledge may also be affected by the learn-

er’s P-C profile, and his/her view of the way technology is basically used. Regarding
the profile, the learner may have a persistent approach to learning (e.g. a preference
for from-concepts-to-skills, from-skills-to-concepts, or skills-only approach, Järvel
& Haapasalo, 2005; a primarily procedural or conceptual approach because that
knowledge is stronger, Hallett, Nunes, Bryant & Thorpe, 2012).9 Distinct students
profiles may refer to students’ different relationships with technology (e.g. thinker-
er, experimentalist; examined by Trouche cited in Artigue, 2002). Regarding the
view of basic technology usage, although technology should primarily be viewed
in the Vygotskian sense as a tool that usually expands our mental functions (Ivic,
1989), students may, nevertheless, hold various views promoting different kinds of
learning (e.g. technology as a master, servant, partner, or an extension of self; Gal-
braith, 2002). Because of that, instruction should take into account these profiles
and views, and, if needed, help students overcome positions that would limit their
learning. Through doing that students would also become more confident in their
abilities to learn mathematics with technology.

5. Closing remarks

Although at certain points of time conceptual knowledge may be based upon
procedural, and/or vice versa (e.g. Kadijevich & Haapasalo, 2001; Arslan, 2010;
Lauritzen, 2012), there is an agreement that the two types of knowledge usually
develop iteratively, one influencing the other (Rittle-Johnson & Schneider, 2015).
Future research may thus focus on modelling such dependence for a particular
problem area. (Technology may or may not be used.) One such model, for the area
of fractions without utilizing technology, can be found in Bailey et al. (2015). A
more general model that may be (with or without technology) applied to several
areas including fractions can be found in the papers of Haapasalo and colleagues
(Haapasalo, 2003; Haapasalo et al., 2004; Ehmke et al., 2010).

8All these aids, like the whole instruction, may be implemented in the so-called minimalist
fashion (Haapasalo, 2013b).

9As some students tend to proceduralize or conceptualize knowledge items, developing the
two knowledge types and their links may be examined in terms of students’ learning/thinking styles
(Kadijevich, Maksic & Kordonis, 2003). This proposal was empirically supported by Kadijevich
and Krnjaic (2004), who found that the higher field-independence the student demonstrated, the
stronger links between procedural and conceptual knowledge he/she established.
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As a result of this P-C dependence, instruction should not solely use a pro-
cedural or conceptual approach (for comparing the effectiveness of the two ap-
proaches, see, for example, Kadijevich, 2002), but rather a combination of the two.
In other words, an instruction that goes from procedures to concepts should be
combined with an instruction that goes from concepts to procedures through, for
example, “iterating between lessons on concepts and procedures” (Rittle-Johnson,
Schneider & Star, 2015; p. 593). Further research may thus aim at finding the
most effective sequencing of lessons on concepts and procedures, taking into ac-
count critical variables that influence this sequencing (related to tasks, learners,
and technology if applied). To attain a solid understanding of target concepts and
procedures, this sequencing may be more of a conceptual than procedural nature
(Rittle-Johnson, Fyfe, & Loehr, 2016), because, as already mentioned, the influ-
ence of conceptual knowledge on procedural knowledge may be stronger than the
reverse (Rittle-Johnson & Schneider, 2015).

Although procedural and conceptual tasks may be suitable for measuring the
two types of knowledge, conceptual tasks may be proceduralized (e.g. Hallett et al.,
2012), whereas, though much less often, procedural tasks may be conceptualized.
With a requirement to solve each task with technology in both procedural and
conceptual ways (Kadijevich, 2007), the same task can be used to measure the
two types of knowledge. This approach was used (technology was not utilized) by
Chinnappan and Forrester (2014), and Kadijevich and Krnjajic (2004), for example.
Because reliable and valid measurements of procedural and conceptual knowledge
need to be developed (Rittle-Johnson & Schneider, 2015), further research may
focus on this development, especially when technology is utilized.
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[9] Böhm J. (2009). Improving CAS: Critical areas and issues. In: Dj. Kadijevich & R. M. Zbiek
(Eds.), Proceedings of the 6th CAME symposium (pp. 11–14). Belgrade, Serbia: Megatrend
University.

[10] Brown, R. (2003). Computer algebra systems and mathematics examinations: A comparative
study. The International Journal of Computer Algebra in Mathematics Education, 10 (3),
155–182.

[11] Byrnes, J., & Wasik, B. (1991). Role of conceptual knowledge in mathematical procedural
learning. Developmental Psychology, 27 (5), 777–787.

[12] Buteau, C., Jarvis, D. H., & Lavicza, Z. (2014). On the integration of computer algebra sys-
tems (CAS) by Canadian mathematicians: Results of a national survey. Canadian Journal
of Science, Mathematics and Technology Education, 14 (1), 35–57.

[13] Carpenter, T. P. (1986). Conceptual knowledge as a foundation for procedural knowledge.
In: J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp.
113–132). Hillsdale, NJ: Lawrence Erlbaum.

[14] Chinnappan, M., & Forrester, T. (2014). Generating procedural and conceptual knowledge of
fractions by pre-service teachers. Mathematics Education Research Journal, 26 (4), 871–896.

[15] Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in
mathematics. Developmental Review, 34 (4), 344–377.

[16] Dreyfus, T., & Eisenberg, T. (1990). Conceptual calculus: Fact or fiction?. Teaching Math-
ematics and its Application, 9 (2), 63–66.

[17] Drijvers, P. (2004). Learning algebra in a computer algebra environment. The International
Journal of Computer Algebra in Mathematics Education, 11 (3), 77–89.

[18] Ehmke, T., Pesonen, M. E., & Haapasalo, L. (2010). Assessment of university students’
understanding of abstract binary operations. Nordic Studies in Mathematics Education, 15
(4), 25–40.

[19] Engelbrecht, J., Bergsten, C., & K̊agesten, O. (2009). Undergraduate students’ preference
for procedural to conceptual solutions to mathematical problems. International Journal of
Mathematical Education in Science and Technology, 40 (7), 927–940.

[20] Galbraith, P. (2002). ‘Life wasn’t meant to be easy’: Separating wheat from chaff in technol-
ogy aided learning. Proceedings of the 2nd international conference on the teaching of mathe-
matics (Hersonissos-Greece, 1–6 July 2002). Retrieved May 31, 2018, from www.math.uoc.gr/
ictm2/Proceedings/invGal.pdf

[21] Gjone, G. (2004). Process or object? Ways of solving mathematical problems using CAS.
Teaching Mathematics and Computer Science, 2 (1), 117–132.

[22] Gjone G. (2009). The use of CAS in school mathematics: Possibilities and limitations. In:
Dj. Kadijevich & R. M. Zbiek (Eds.), Proceedings of the 6th CAME symposium (pp. 19–23).
Belgrade, Serbia: Megatrend University.

[23] Gray, E., & Tall, D. (1993). Success and failure in mathematics: The flexible meaning of
symbols as process and concept. Mathematics Teaching, 142, 6–10.

[24] Haapasalo, L. (2003). The conflict between conceptual and procedural knowledge: Should we
need to understand in order to be able to do, or vice versa? In: L. Haapasalo & K. Sormunen
(Eds.), Towards meaningful mathematics and science education (Proceedings on the 19th
symposium of the Finnish mathematics and science education research association, pp. 1–20;
Bulletins of the Faculty of Education No. 86). Joensuu, Finland: University of Joensuu.

[25] Haapasalo, L. (2013a). Adapting assessment to instrumental genesis. The International Jour-
nal for Technology in Mathematics Education, 20 (3), 87–94.

[26] Haapasalo, L. (2013b). Two pedagogical approaches linking conceptual and procedural knowl-
edge, paper presented at the 8th Congress of European Research in Mathematics Education
(CERME 8), Manavgat-Side, Antalya, Turkey, 6–10 February, 2013.



26 Dj. M. Kadijevich

[27] Haapasalo, L., & Kadijevich, Dj. (2000). Two types of mathematical knowledge and their
relation. Journal für Mathematik-Didaktik, 21 (2), 139–157.

[28] Haapasalo, L., & Zimmermann, B. (2015). Investigating mathematical beliefs by using a
framework from the history of mathematics. In: C. Bernack-Schler, R. Erens, T. Leuders &
A. Eichler (Eds.), Views and beliefs in mathematics education (pp. 197–211). Wiesbaden,
Germany: Springer Spektrum.

[29] Haapasalo, L., Zimmermann, B., & Rehlich, H. (2004). A versatile tool to promote link
between creative production and conceptual understanding. The Teaching of Mathematics, 7
(2), 61–70.

[30] Hallett, D., Nunes, T., Bryant, P., & Thorpe, C. M. (2012). Individual differences in con-
ceptual and procedural fraction understanding: The role of abilities and school experience.
Journal of Experimental Child Psychology, 113 (4), 469–486.

[31] Heid, K. M. (2002). How theories about the learning and knowing of mathematics can in-
form the use of CAS in school mathematics: One perspective. The International Journal of
Computer Algebra in Mathematics Education, 8 (2), 95–112.

[32] Heid, M. K., & Blume, G. M. (Eds.) (2008). Research on technology and the teaching and
learning of mathematics: Research syntheses. Charlotte, NC: Information Age Publishing.

[33] Heid, M. K., Thomas, M. O. J, & Zbiek, R. M. (2013). How might computer algebra systems
change the role of algebra in the school curriculum? In: M. A. Clements, A. J. Bishop, C.
Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Third international handbook of mathematics
education (pp. 597–641). New York: Springer.

[34] Hoyles, C., & Lagrange, J.-B. (Eds.) (2009). Mathematics education and technology – Re-
thinking the terrain. New York: Springer.

[35] Ivic, I. (1989). Profiles of educators: Lev Vygotsky. Prospects, 19 (3), 427–436.

[36] Järvelä, J., & Haapasalo, L. 2005. Three types of orientations by learning basic routines
in ICT. In: M. Julkunen (Ed.), Learning and instruction on multiple context and settings
III. (Proceedings of the 5th Joensuu symposium on learning and instruction, pp. 205–217;
Bulletins of the Faculty of Education No. 96). Joensuu, Finland: University of Joensuu.

[37] Jaworski, B. (2015). Mathematics meaning-making and its relation to design of teaching.
PNA, 9 (4), 261–272.

[38] Kadijevich, Dj. (1999a). Conceptual tasks in mathematics education. The Teaching of Math-
ematics, 2 (1), 59–64.

[39] Kadijevich, Dj. (1999b). An approach to learning mathematics through knowledge engineer-
ing. Journal of Computer Assisted Learning, 15 (4), 291–301.

[40] Kadijevich, Dj. (2002). Are quantitative and qualitative reasoning related? A ninth-grade
pilot study on multiple proportion. The Teaching of Mathematics, 5 (2), 91–98.

[41] Kadijevich, Dj. (2003). Linking procedural and conceptual knowledge. In: L. Haapasalo & K.
Sormunen (Eds.), Towards meaningful mathematics and science education (Proceedings on
the 19th symposium of the Finnish mathematics and science education research association,
pp. 21–28; Bulletins of the Faculty of Education No. 86). Joensuu Finland: University of
Joensuu.

[42] Kadijevich, Dj. (2007). Towards relating procedural and conceptual knowledge by CAS, invit-
ed presentation at 5th Computer Algebra in Mathematics Education Symposium, Hungarian
Academy of Science, Pcs-Hungary, 19–20 June 2007.

[43] Kadijevich, Dj. (2009). Critical issues of improving computer algebra systems. In: Dj. Kadi-
jevich & R. M. Zbiek (Eds.), Proceedings of the 6th CAME symposium (pp. 25–29). Belgrade,
Serbia: Megatrend University.

[44] Kadijevich, Dj. M. (2014). Neglected critical issues of effective CAS utilization. Journal of
Symbolic Computation, 61–62, 85–99.

[45] Kadijevich, Dj., & Haapasalo, L. (2001). Linking procedural and conceptual mathematical
knowledge through CAL. Journal of Computer Assisted Learning, 17 (2), 156–165.

[46] Kadijevich, Dj., Haapasalo, L., & Hvorecky, J. (2005). Using technology in applications and
modelling. Teaching Mathematics and its Applications, 24 (2–3), 114–122.



Relating procedural and conceptual knowledge 27

[47] Kadijevich, Dj., & Krnjaic, Z. (2004). Is cognitive style related to link between procedural
and conceptual mathematical knowledge?. The Teaching of Mathematics, 6 (2), 91–95.

[48] Kadijevich, Dj., Maksich, S., & Kordonis, I. (2003). Procedural and conceptual mathematical
knowledge: Comparing mathematically talented with other students. In: E. Velikova (Ed.),
Proceedings of the 3rd international conference “Creativity in mathematics education and
the education of gifted students” (pp. 103–108). Athens, Greece: V-publications.

[49] Kadijevich, Dj., & Marinkovic, B. (2006). Challenging mathematics by “Archimedes”. The
Teaching of Mathematics, 9 (1), 31–39.

[50] Kaput, J. (1992). Technology and mathematics education. In: D. Grouws (Ed.), Handbook
of research on mathematics teaching and learning (pp. 515–556). New York: Macmillan.

[51] Kieran, C. (2013). The false dichotomy in mathematics education between conceptual un-
derstanding and procedural skills: An example from algebra. In: K. R. Leatham (Ed.), Vital
directions for mathematics education research (pp. 153–171). New York: Springer.

[52] Kilpatrick, J., & Swafford, J. (Eds.). (2002). Helping children learn mathematics. Washing-
ton, DC: National Academies Press.

[53] Lagrange, J.-B. (2005). Using symbolic calculators to study mathematics: The case of tasks
and techniques. In: D. Guin, K. Ruthven & L. Trouche (Eds.), The didactical challenge of
symbolic calculators: Turning a computational device into a mathematical instrument (pp.
113–135). New Yok: Springer.

[54] Lauritzen, P. (2012). Conceptual and procedural knowledge of mathematical functions. Pub-
lications of the University of Eastern Finland. Dissertations in Education, Humanities, and
Theology No. 34. Joensuu, Finland: University of Eastern Finland.

[55] OECD (2014). PISA 2012 results in focus: What 15-year-olds know and what they can do
with what they know. Paris, France: The Author.

[56] Olive, J., & Makar, K. (with Hoyos, V., Kor, L. K., Kosheleva, O., & Sträßer, R.) (2009).
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