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Abstract Despite its high educational relevance, just a few CAL studies have examined
secondarily whether their computer-based treatments related procedural and conceptual
mathematical knowledge. This study summarizes their findings, explains how these
knowledge types may be linked, and proposes a constructivist CAL environment
enabling these knowledge types to be connected.

INTRODUCTION

According to Fey (1989), computers can be used to change mathematics

teaching by decreasing the time needed for procedural skills and increasing

the time for conceptual understanding, the importance of which has been

realized by many researchers (see, for example, Grouws, 1992). If we agree

that a main goal of mathematics education is to develop both procedural and

conceptual knowledge and make links between the two, a very important

research question regarding computer-based mathematics education is “how

different technologies affect the relation between procedural and conceptual

knowledge” (Kaput, 1992; p. 549). However, just a few CAL studies have

examined the effects of their treatments regarding the coordination of

procedural and conceptual mathematical knowledge. While Schwarz et al.

(1990) and Simmons & Cope (1997) evidenced that the links between these

knowledge types (the P-C links) can be established, Yerushalmy (1991),

Hochfelsner & Kligner (1998) and Laborde (2000) found that their

                                                       
# A shortened report of a study realized with Lenni Haapasalo, University of Joensuu,

Finland. This study is available at http://www.mi.sanu.ac.yu/~djkadij/acdca6.htm



treatments did not promote the P-C links. It is important to underline that

most of these studies neither clearly define the relevant notions regarding

procedural and conceptual knowledge measuring them reliably, nor

thoughtfully examine the question of the P-C links at the theoretical and the

instructional levels. In the remaining text the latter issues will be briefly

examined by assuming a knowledge distinction proposed by Haapasalo &

Kadijevich (2000).

HOW MAY THESE KNOWLEDGE TYPES BE LINKED?

According to Haapasalo & Kadijevich (2000), an answer to this question

depends whether one assumes the reliance of conceptual knowledge on

procedural knowledge or vice versa.1

Many researchers find that procedural knowledge enables conceptual

knowledge development. An instructional implication is: Utilize procedural

knowledge and reflect on the outcome. Having assumed this knowledge

reliance, the P-C links may be promoted through microworlds coordination

(Papert, 1987) or proceptual thinking (Gray & Tall, 1993).

Most, perhaps the majority of, researchers/educators assume that conceptual

knowledge enables procedural knowledge development. An instructional

implication is: Build meaning for procedural knowledge before mastering it.

Having presupposed such a knowledge reliance, it is utilization competence

(Gelman & Meck, 1986) or production rules utilization (Anderson, 1983)

whereby the P-C links may be promoted.

                                                       
1 According to Vygotsky (1978), procedural knowledge does precede conceptual know-

ledge ontogenetically, but it is school learning that precedes intellectual development.
While the former dependence, for example, may be suitable for introducing the concept
of a limit that promotes its dynamic definition, the latter one may be appropriate for
teaching fractions and decimals (Haapasalo & Kadijevich, 2000).



CAL ENVIRONMENT PROMOTING THE P-C LINKS

According to Anderson (1983), the P-C links can be promoted through

learning activities requiring production rules utilization2. Such activities may

be realized within LISD (Learning through Intelligent Software

Development) - an approach to learning mathematics through knowledge

engineering (Kadijevich, 1998, 1999, 2000). As this approach utilizes,

among others, programming in logic and PROLOG enabling the

representation and flexible use of procedural and declarative (conceptual)

knowledge, it is reasonable to expect that the LISD treatment would not

only promote the acquisition of both procedural and conceptual knowledge,

but also relate these knowledge types. A recent study (Kadijevich, 1994)

gave some empirical evidence for such a claim. By applying a pre-test/post-

test design3, a significant correlation was found between procedural

knowledge scores and conceptual knowledge scores on the post-test, which

was not present on the pre-test. However, more empirical evidence

regarding the P-C links within the LISD or a LISD-like treatment is still

needed. Having in mind the relevance of the affective domain to problem

solving performance (e.g., Schoenfeld, 1992), further research may examine

the P-C links not only in cognitive, but also in affective terms.
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